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1 Maximizing profit while minimizing risk

Let’s say there are several stocks i, each of which has a random return ri over
some fixed time period. Also say you have a good idea of the expected returns,
r̄i, and also the covariances, vij, on these returns. If I buy fractions (or weights)
xi of the respective stocks, then my profit, P , is itself a random variable. The
expected return on my investment is

E(P ) =
∑
i

xir̄i. (1)

We can model risk as the standard deviation squared, or variance, of R.

V(P ) =
∑
i

∑
j

xixjvij, (2)

which is the general form for the variance of a weighted sum of correlated vari-
ables.

The critical idea of modern portfolio theory (MPT) is that for a given level of
expected return, ρ, there is some minimum, unavoidable risk. Portfolios which
minimize risk for a particular level of profit are said to lie on the “efficient frontier.”
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Such portfolios solve the optimization problem below.

minimize f(x) =
∑
i

∑
j

xixjvij (3)

such that g(x) =
∑
i

xi = 1 (4)

and h(x) =
∑
i

xir̄i = ρ. (5)

We can transform this problem into a set of linear equations—then any matrix
solver will do. To transform a constrained maximization into a set of equations,
use the method of Lagrange multipliers. If x is optimal, then ∇f at x must be
perpendicular to the constraint surface defined by g(x) = 1, h(x) = ρ. This is
equivalent to requiring

∇f = λ∇g + µ∇h (6)

for some unknown values of λ and µ (the “Lagrange multipliers”).
Getting the gradient of f is a little tricky because of the double sum, but the

standard calculus rules still apply. The tricky part is that there are many terms
that depend on xk (where k is a particular index). Some are of the form xkxi,
others are of the form xixk, and one is of the form x2k. If you like, you can write
out the double sum (with . . . ’s as appropriate) and think about the different
derivatives. Instead, I’m going to use a convenient notation called the Kronecker
delta. This is a symbol δij defined by

δij =

{
1, i = j

0, i 6= j.
(7)

That is, we define δij as 1 if i and j are the same, and 0 if they are different.
This way we can write a single expression for

∂

∂xk
(xixj) (8)

that will hold regardless of whether i, j, both, or neither are equal to k. The idea
is that

∂xi
∂xk

= δik. (9)
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When you say it in words, this is a simple idea. It just says that the partial
derivative of a variable is 1 if it’s the same variable you’re taking a derivative
with respect to, and 0 if they’re different variables. In fact, you can think of (9)
as stating what a partial derivative means: “treat other variables as constants.”

Then apply the product rule for each term:

∂f

∂xk
=
∑
i

∑
j

(δikxjvij + xiδjkvij) . (10)

Generally speaking, a Kronecker delta inside a (single) sum will pick out the
one term of the sum for which the indices match. In our case, the first delta
picks out i = k in the sum over i, and the second delta picks out j = k in the
sum over j. Thus

∂f

∂xk
=
∑
j

xjvkj +
∑
i

xivik (11)

= 2
∑
i

vkixi. (12)

To go to the second line, I used the fact that covariances are symmetric: vik = vki.
Then the two sums are the same, just with different names on their indices. You
can rename both to i, since each sum is only over one variable. That’s where the
factor of two comes from.

Rewriting (6) in terms of the gradients we calculated, I get

2
∑
i

vkixi = λ+ µr̄k, (13)

which must hold for all k. Each k represents a row of the vector equation (6), or
in other words, a component of the gradients involved.

We are now in a position to reformulate the optimization as a matrix equation!
To do that, first recall the definition of a matrix–vector product. Let’s say that
some matrix A has coefficients Aki, indexed by row k and column i. If a vector
~x is indexed by xi, then the kth row of the vector A~x is given by∑

i

Akixi. (14)
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With this in mind, we can write a large “composite” matrix equation that will
satisfy Eqs. (4), (5), and (13). It will help to mentally move λ+µr̄k to the other
side of the equation first. Also bear in mind that x, λ, and µ are the unknown
quantities to appear in the matrix equation.

2v11 · · · 2v1N −1 −r̄1
... . . . ...

...
...

2vN1 · · · 2vNN −1 −r̄N
1 · · · 1 0 0
r̄1 · · · r̄N 0 0




x1
...
xN
λ
µ

 =


0
...
0
1
ρ

 (15)

This matrix equation can be solved by any of the various tools out there
(MATLAB, Python, R, Excel, etc.). The solutions for various values of ρ give you
efficient portfolios for different levels of expected return. In the above formulation,
there is no requirement that xi ≥ 0. In practice, negative weights may indeed
arise. They correspond to short-selling, which we may want to avoid for various
reasons. In that case the optimization problem to solve is

minimize
∑
i

∑
j

xixjvij (16)

such that
∑
i

xi = 1, (17)∑
i

xir̄i = ρ, (18)

and xi ≥ 0 for all i. (19)

This system cannot be solved with Lagrange multipliers, due to the presence
of inequality constraints. It can be solved by a “quadratic programming” (QP)
package, such as the qp module of cnxopt for Python. Just be aware that the
QP folks often write the sums above in terms of matrices and vectors. The
representations are equivalent, of course. In particular,∑

i

∑
j

xixjvij = xTV x, (20)

where V and x are the matrix and column vector versions of σij and xi, respec-
tively.
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2 Itô calculus

The QP formalism is only useful if we can estimate r̄i and vij from historical price
data. In order to do that, we need a model of correlated, random stock prices.
One method of dealing with functions of random variables is the Itô calculus,
which I describe here.

The basic building block of stochastic processes is Brownian motion, also
called the Wiener process. You can arrive at Brownian motion from a limiting
process of discrete random walks. Suppose we take n steps, where each step is
an increment si = ±1 with equal probability of each direction. Let’s also say
that each step is independent of all the previous ones. The expected value of
each step is 0, and the variance is 0.5(+1− 0)2 + 0.5(−1− 0)2 = 1.

By the linearity of expectations, the expected value of the walk’s final desti-
nation is 0:

E

[
n∑
i=1

si

]
=

n∑
i=1

0 = 0. (21)

Similarly, the rule for addition of variances gives us

V

[∑
i

si

]
=
∑
i

1 = n. (22)

In order to get at the continuous version, we instead specify a total time t,
which is split into n steps. We then take n→∞. If we suppose the variance of
each step is t/n, then the variance of the walk is∑

i

t/n = t, (23)

irrespective of n. This variance also holds in the limit as n → ∞. Standard
Brownian motion is commonly denoted by Bt, with B0 = 0. 1 It satisfies a few
important properties. If (t, t′) and (u, u′) are non-overlapping time intervals, then
Bt′ −Bt and Bu′ −Bu

• are independent

• are normally distributed
1Sometimes I’ll write B(t) or just B.
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• have 0 mean

• have variance t′ − t (or u′ − u, respectively)

Brownian motion has no knowledge of the future. It is therefore a good choice
for modeling things such as future stock prices. Furthermore, only the current
value matters in predicting the future. Given knowledge of the entire trajectory
all the way up to some current value Bt, our expectation for any future value is
just Bt. This is called the martingale property.

It’s worth mentioning that while standard Brownian motion has variance t,
you can easily scale this. For some constant σ,

V[σBt] = σ2V[Bt] = σ2t. (24)

The first equality is a generic property of variances, and the second is one of the
properties of standard Brownian motion. (The earlier time is 0, where we know
B0 = 0.)

Although Bt is continuous everywhere, it is differentiable nowhere. Therefore,
we have to be particularly careful when trying to use calculus on functions of Bt.

As an example, suppose Y was an ordinary, continuous, differentiable function
of t. Also suppose we have some continuous and differentiable function F (t, Y ).
The multivariable chain rule says that

dF

dt
=
∂F

∂t
+
∂F

∂Y

dY

dt
, (25)

which can also be written as

dF =
∂F

∂t
dt+

∂F

∂Y
dY. (26)

The problem is that for functions F (t, Bt), we can’t apply (25). That’s be-
cause dB/dt does not exist! In order to calculate dF for functions of Brownian
motion, we must use Itô’s lemma. Here it is: 2

dF =

(
∂F

∂t
+

1

2

∂2F

∂B2

)
dt+

∂F

∂B
dB. (27)

2Some authors give a more general version, but we will only need the formula above.
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The only new feature in this rule is the term involving a second derivative. One
way to gain intuition for Itô’s lemma is to think of it as a Taylor series, where
we have replaced dB2 with dt and neglected higher powers of dt. This is not a
derivation, but it can help you remember the formula and get a better idea of
what’s going on.

To see why you might want to replace dB2 with dt, first recall the following
rule for variances.

V[A] = E[A2]− E[A]2, (28)

where A is “anything.” Applying this rule to an interval ∆t of Brownian motion,
we have

V[∆B] = E[∆B2]− E[∆B]2. (29)

We already know that the variance is ∆t, and that the expectation of ∆B is 0.
Thus

E[∆B2] = ∆t, (30)

which is always true for finite intervals. So it isn’t too much of a stretch to apply
it to infinitesimals as well.

An equivalent way of writing Itô’s lemma is the integral version,

F (t′)− F (0) =

∫ t′

0

(
∂F

∂t
+

1

2

∂2F

∂B2

)
dt+

∫ t′

0

∂F

∂B
dBt. (31)

The first integral is over time. The meaning of the second integral is not at
all obvious. It has a differential, dBt, which is itself a random variable. It can be
defined like the ordinary Riemann integral, where we take a limit of increasingly
narrow rectangles: ∫ t′

0

g(t, Bt) dBt = lim
n→∞

n∑
i

g(ti, Bi) ∆Bi. (32)

Here, the width, ∆Bi, as well as the height, g(ti, Bi), of the rectangles are
random. Itô’s lemma tells us how to perform such integrals, by putting them in
terms of things which we already know how to perform.
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3 Geometric Brownian motion

You can also use Itô’s lemma to solve stochastic differential equations, which are
differential equations written in terms of stochastic variables. For example, stock
prices are commonly modeled by

dS = µS dt+ σS dB. (33)

Here, changes in price are proportional to the current price, which makes sense:
Larger companies should expect larger profits, losses, and random fluctuations.
Itô’s lemma gives us conditions on S. Generally, any S(t, Bt) satisfies

dS =

(
∂S

∂t
+

1

2

∂2S

∂B2

)
dt+

∂S

∂B
dB. (34)

Equating the dt and dB terms of (33) and (34) gives us two conditions on S:

∂S

∂B
= σB, (35)

and
∂S

∂t
+

1

2

∂2S

∂B2
= µS. (36)

Although S(t, Bt) is a function of a random variable, at this point we are only
concerned with the form of S in terms of its explicit B– and t–dependence. In
other words, we have used Itô’s lemma to remove all the stochastic-ness from
the problem. Now it’s just like any other coupled system; you don’t need any
stochastic calculus at all to solve (35) and (36).

Start with (35): its solution is

S = c(t)eσB (37)

for some unknown function c of the other variable, t. (It’s a “constant” with
respect to B.) Plug this result into (36) to get

c′(t)eσB +
1

2
c(t)σ2eσB = µc(t)eσB. (38)

A little bit of algebra goes a long way in making this more transparent. We have,
equivalently,

c′(t) =

(
µ− σ2

2

)
c(t). (39)
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That’s an ordinary (not partial) differential equation in t, and it has the solution

c(t) = k exp

[(
µ− σ2

2

)
t

]
(40)

for any constant k. Combining (37) and (40) and putting in the initial condition
S(0) gives you the solution to (33).

S(t) = S(0) exp

[(
µ− σ2

2

)
t+ σBt

]
. (41)

Evidently, the solution exhibits geometric Brownian motion: it’s the exponential
of Brownian motion with a drift term. It’s also said to have a lognormal distribu-
tion; the logarithm of S(t) is normally distributed with mean lnS(0)+(µ−σ2/2)t
and variance σ2t.

4 Measuring model parameters

I still haven’t addressed how we can calculate r̄i and vij, or even measure µi and
σij. The whole reason we needed a concrete model was that the expected returns
and covariances we want to use are future variables—we cannot sample them!
Instead, we can observe the logarithms of historical price data, which should have
the form

logSi(t) = log Si(0) +

(
µi −

σ2i
2

)
t+ σiBi(t) (42)

for each stock i. In practice, the data are separated by some time-discretization,
∆t. Then the increments are

∆ logSi =

(
µi −

σ2i
2

)
∆t+ σi∆Bi. (43)

These increments form the set of observations we need! Now we have many
numbers pulled from the same distribution, and you can use them to calculate
the sample covariances as well.

Actually, it’s not immediately clear what it means to have correlated Brownian
walks. One way to build them is to start with a collection of independent,
standard Brownain walks, then combine them in different proportions. Concretely,
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let’s say we have several independent walks {Xi(t)}, from which we create two
related processes A(t) and B(t).

A(t) =
∑
i

aiXi(t) (44)

B(t) =
∑
i

biXi(t) (45)

Now we can calculate the covariance between ∆A and ∆B over the same interval
∆t. It is

E [∆A∆B] = E

[∑
i

∑
j

aibj∆Xi∆Xj

]
(46)

The first observation to make is that most of these terms have 0 expectation.
That’s because the ∆Xi’s were chosen to be independent. In fact, the definition
of independence says that

E [∆Xi∆Xj] = 0 (47)

if i 6= j. We know the expectation for terms where i = j, too. The expectation
of ∆X2

i is the variance of ∆Xi, and that’s ∆t. Combining these facts with the
linearity of E, the covariance between ∆A and ∆B is

∆t
∑
i

aibi. (48)

There are two important conclusions to take away here.

1. There is such a thing as correlated Brownian motion.

2. Its covariance is proportional to ∆t.

That’s nice, but you may wonder what the point is procedurally. Here’s the recipe.
First calculate the sample covariance matrix of ∆ logSi. Then when you’re done,
divide it by ∆t! That will give you σij. Now for any future length of time t for
which we care to hold our stocks, the log–prices should have covariance σijt.

To get the parameters µi, observe that the sample means have the form
(µi − σ2i /2)∆t. So once we have the σi’s, it’s easy to do a little algebra and get
the µi’s.
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Up to this point we have measured µi and σij, but not r̄i and vij. The first two
are GBM parameters characterizing—in some sense—the random motion of the
stock prices. The other two tell us what we really want—the expected returns
and covariances on the actual stock prices! The final ingredient, therefore, is to
relate the model parameters to the price statistics.

First let’s take care of the expected return, S̄(t)/S(0). The deterministic factor
in (41) will merely scale it, so let’s start with the expected value of exp [σBt],
where Bt is normally distributed with mean 0 and variance t. Recalling the normal
distribution function, we can write the integral explicitly:

E
[
eσB
]

=

∫ ∞
−∞

dB p(B) eσB (49)

=
1√
2πt

∫ ∞
−∞

dB e−B
2/2t+σB. (50)

There is a trick to solving this integral; it involves completing the square on the
exponent. Observe that

−B
2

2t
+ σB = − 1

2t

(
B − σt

)2
+
σ2t

2
. (51)

Pulling the B–independent term out of the integral, we are left with

E
[
eσB
]

= eσ
2t/2

[
1√
2πt

∫ ∞
−∞

dB e−(B−σt)
2/2t

]
. (52)

There is a curious interpretation of the factor in large square brackets. It is the
integral of some strange new normal distribution with mean σt and variance t.
I don’t see any particular reason why that distribution is meaningful, but like all
probability distributions, it must integrate to 1! We are therefore left with

E
[
eσB
]

= e+σ
2t/2. (53)

To get the expected return of the stock, tack back on the deterministic factor
from (41). We are left with a very nice result:

E
[
Si(t)/Si(0)

]
= r̄i = exp(µt). (54)

Evidently the mean return is slightly greater than the median, or most likely,
return. That would correspond to B = 0 and is given by exp[(µ − σ2/2)t].
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Although the logarithm of S is normally distributed, the distribution of S itself
is asymmetric; the mean occurs a bit downstream from the peak.

The covariances are more tedious to derive.3 Anyway, the result we need is

Cov

[
Si(t)

Si(0)
,
Sj(t)

Sj(0)

]
= vij = e(µi+µj)t

(
eσijt − 1

)
. (55)

3You can look up the properties of lognormal distributions in general, then apply them to our case. The fact
that our variables arise from GBM is not relevant once you know the distribution.
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